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ABSTRACT

This document gives an extensive summary of the components of DPoPS, a Delegated
Proof-of-Private-Stake implementation under X-Cash, a Monero based hybrid-privacy coin. The
change of consensus algorithm from Proof-of-Work to Delegated Proof-of-Stake is a significant
milestone for the X-Cash blockchain, and will also bring innovation to CryptoNote, Monero and
the overall blockchain ecosystem.

Delegated Proof-of-Stake (DPoS) is an efficient, decentralized, democratic, and flexible
blockchain consensus framework which has been actively researched in the last years.
However, the private nature of a coin can make DPoS implementation challenging as balances
are obfuscated. As a representative system, DPoS needs the right balance of transparency to
remain efficient, and most privacy coins cannot

Introduction
In a centralized system, all parties of an ecosystem refer to the decision making of a known and
trusted third-party; the general consensus is not needed, as the centralized entity administers
the decisions and validations. In a decentralized system (blockchain, DLTs, etc.), reaching
consensus is challenging as every party must agree to the majority on a similar decision,
instantly and without fault. Algorithmically, several solutions have been developed to solve this
issue, namely, but not limited to, Proof-of-Work (PoW), Proof-of-Stake (PoS) or Delegated
Proof-of-Stake (DPoS) [1] [2].

Until recently, most privacy coins were backed by Proof-of-work algorithms mainly for historical
reasons and because the private nature of these blockchains made it hard to reveal one’s stake
in the blockchain without voiding the anonymity principle of the blockchain entirely.

In the last few years, we have seen Proof-of-Stake privacy coins emerge using mixing and
conjoin methods to allow private transactions. Having a private balance and stake is another



problem in itself. Some blockchain successfully achieved partial or complete anonymity of
staking through a combination of reserve proof and transaction mixing. If privacy can be
promoted and even guaranteed using a Proof-of-Stake algorithm, it is imaginable that a
blockchain could host a privacy coin while using a Delegated-Proof-of-Stake algorithm.

What makes DPoS appealing is that it allows anyone with a minimal amount of coins to take
part directly or indirectly in the consensus process while having the same benefits as a PoS
algorithm - being more energy-efficient and flexible, having a quicker transaction broadcasts,
and being more attack-proof [3]. In a way, DPoS allows more people to take part in the
governance of a blockchain than PoS, and one could argue that it is closer to the general
principle of decentralization because it is more open to the public.

However, applying DPoS to a privacy coin is quite challenging due to the private nature of the
blockchain. The same challenges as for PoS have to be faced (stake and balance privacy) and
voting privacy also has to be guaranteed.

Achieving a DPoS consensus in a privacy coin would prove that blockchain could be an
alternative to traditional governance models - including the ones used outside of the blockchain
ecosystems. In this paper, we are exploring one of the possible paths enabling a DPoS
consensus in a CryptoNote (CN) coin. This path could pave the way for Monero and other CN
coins to a new governance model.

In order to explain the challenges in the implementation of DPoS in privacy coins, more
especially in CN coins, we will expose the state of the art of DPoS. Then, we will discuss the
different points which need to be addressed in order to make this blockchain consensus
applicable to privacy coins. Lastly, we will explain the way we implemented DPoPS in the
X-CASH protocol.

State of the art
There are two primary reasons behind the creation of the DPoS consensus (and PoS to some
extent). Dan Larimer most specifically references the fact that bitcoin’s Proof-of-Work is too
wasteful [4]. Much energy is poured into bitcoin mining, and there are probably other
alternatives to achieve the same goal. He was also looking at improving the speed efficiency of
the algorithm. The redundancy of Proof-of-Work was, in his mind, one of the shortcomings of the
bitcoin.

DPoS is designed to be as robust as Bitcoin’s Proof-of-Work algorithm, competitively fast (if
possible as fast as a centralized exchange database) while still being open and decentralized.

Larimer successfully implemented DPoS in BitShares, Steem, and EOS. Now, more and more
projects are successfully using DPoS as a governance model for their blockchain architecture
(Ark, Cardano, Tezos, Lisk, etc.).



In order to explain what a DPoS consensus is about, we will discuss the different points/aspects
making DPoS unique. First, we will address the block producing process before studying the
role the delegates play in the consensus. Then, we will discuss the standard DPoS election
process and its consequences to expose the security advantages this algorithm offers finally.

Block production in DPoS

The reason Proof-of-Work, and to some extent PoS, is deemed inefficient - both regarding
energy consumption and blockchain speed - is the fact the whole network takes part in blocks
validation (e.g. transactions validation). This principle - necessary to guarantee a neutral and
censorship-resistant creation of blocks - is given to a select few in DPoS called Block producers.



Block production and the delegates’ role

These block producers are selected from the delegates at specific times during a block
production round. The delegates are elected through a process where token holders can cast
their votes proportionally to the voter’s stake in the network. This election process allows token
holders to commission a delegate to represent them while still holding their assets in cold
storage. Particl has called this “cold staking” [5]. At the end of each election, the top candidates
gathering the most votes are elected.

The quantity of delegate spots is usually an odd number and can vary significantly depending
on the blockchain. A higher number of delegate nodes is commonly associated with a better
decentralization while being done at the cost of lower performances.

It is important to note that the number of delegates is usually much lower than the number of
nodes in both PoW (miners) and PoS (stakers) blockchains. This is why DPoS is usually
deemed more centralized than competitors’ consensus.

In a DPoS blockchain, every new block a delegate is selected to become the block producer in
a round-robin manner and is given a time slot during which it is supposed to produce a block. In
case of default of a block producer, the next block producer is selected and is in charge of
forging the block. This means that the round time is linked to the blockchain’s specific block time
and never changes.

In order to produce a block, the current block producer refers to the consensus node(s) to
establish the current state of the network and validate both the blocks and their link in the chain.
This goes to show how essential delegates and consensus nodes are in DPoS. In bitcoin’s proof
of work, while only miners can create blocks, every node in the network (full and light nodes)
verifies the integrity of both transactions and blocks.

Election process and block reward

The election process is different in every DPoS blockchain - the beginning, the duration and the
ending of the process can vary in terms of conditions and times. This being said, the election
processes usually follows the same path. Token holders vote for a delegate in order to increase
its chances of becoming a block producer by gathering more votes than its competitors. The
vote in itself is given to a delegate for a specific period and tacitly reconducted if the voter did
not change its vote. This implies that the voter can change its vote at any time during a round in
anticipation of the next election round.

Because delegates are elected, the block reward for successfully producing a block is usually
shared and spread to the voters in order to reward them of their trust. This creates an incentive
for the votes to delegate their stakes and for their representatives to be the avatar they were
elected to be. A social contract of sorts if passed between delegates and voters.



At the end of each round, a new election takes place, allowing voters to reassess their position.
This system promotes delegates’ responsibility towards their electorate and having a shorter
round is not that big of a deal in a blockchain system. In a political system, on the other hand,
even though having a short mandate is deemed to be promoting politicians’ responsibility, it is
also considered to lead to immobilism.

At the end of each round, the network checks the delegates’ status from the last election list
before starting the next block production round.

DPoS and security

As for any blockchain, the DPoS algorithm needs to guarantee the security of the network. It is
possible to divide attacks into two groups: attacks from network actors and attacks from outside
sources, purely perpetrated to damage the network.

Attacks from network actors

First of all, an actor could benefit from cheating the rest of the network. It is important to
remember that voters play an important role in a DPoS blockchain - they elect the delegates
who can become block producers. By doing this, they also take part in the network’s security
and “checks and balances” system. Because the token holders elect delegates every round, the
system promotes a virtuous circle where delegates have more incentive to represent their
electorate the best way possible since their mandate is at stake.

Just as in PoS, the staking system helps prevent the number of bad actors in the network. As
opposed to PoW, to become a block producer one needs to prove its interest in the success of
the network through a staking mechanism. The fundamental rationale behind this process is to
make sure that a significant stake is collateralized by the actors in charge of the consensus.
Therefore, they are mechanically incentivized to behave in a manner that will not negatively
impact the coin behind the blockchain. For instance, in case of a double spend or a DDOS
attack performed by the delegates, the market capitalization of the coin would be significantly
impacted, making the loss from the collateral devaluation more harmful than the potential profits
from the attack. More generally, anybody who is willing to benefit from the network - whether
through block minting or voting - has an interest in protecting the network’s integrity through this
collateralization process. In consequence, the incentive of being a bad actor in the network
drops significantly.

Attacks from outside sources

As discussed, the hypothesis could arise that outside actors could benefit from damaging the
blockchain. In a PoW blockchain, an attack could damage the network through what is known
as a “51% attack”. In this specific case, one needs to control 51% of the computing power
behind a blockchain’s block production. This type of attack can be already hard to set up,
especially for the top cryptocurrencies where the additionally needed hashrate is not reachable;



either from pure hardware supply limitation or lack of liquidity in the hashrate market places
such as NiceHash. The bigger the network is, the tougher this type of attack gets.

Potentially, It can get even harder with a PoS/DPoS consensus. Rather than having 51% of the
computing power, an actor needs 51% of the coin staking supply to proceed to such attack. A
quick look at Bitcoin’s market cap exposes the ludicrousness of the idea.

Moreover, most DPoS blockchains have raised the threshold of required stake in the network
from 51% to 67%, making an attack even more costly and therefore, the network more resilient.

Finally, just like any blockchain, a DPoS blockchain needs to be Byzantine Fault Tolerant (BFT)
[6]. In this specific case, we call this Delegated BFT (DBFT).

To overcome byzantine failures, a network needs to guarantee a consistent and coherent global
view of the system’s state. For DPoS consensuses, a more centralized approach has usually
been adopted.

One possible DBFT implementation is to have one or a group of consensus nodes define the
state of the blockchain. A consensus node is a witness of the system’s state. Like any witness,
its testimony is questioned and confronted with reality/facts. Whether there is a single or a group
of consensus node, most DPoS algorithms offer a decentralized process to confront the version
of the truth proposed by each actor of the consensus.

While it is often argued that DPoS is more centralized than other types of consensus, because
of the block production process and the existence of consensus nodes, the election of delegates
makes it very democratic. Just like politics, there is a very delicate scale between democracy (in
this case, decentralization) and efficiency, and each blockchain brings a different vision to the
table.

What is more evident is the fact that this consensus algorithm is still in its infancy, and none of
these projects features private transactions beside ideation stage project such as pEOS [7]. The
key goal and motivation behind the X-Cash Delegated Proof-of-Stake variant is to offer an
alternative governance model for networks hosting privacy coins.

Delegate Proof of Private Stake (DPoPS)
To understand the challenges of using a DPoS consensus in a privacy coin, it is important to
realize what information is protected/hidden depending on the blockchains.

Privacy on a blockchain is actually defined by more than offering private transactions. If only
transactions were private, any person with time, resources, or any well-programmed computer
could recreate transactions on a network through the use of statistical analysis for instance.

To protect one’s privacy, a network needs to hide as much information as possible. It can be
raised that any information that is released could be compared to any other in order to decrypt



the transaction web. Thus, to achieve complete privacy, a blockchain needs to hide not only the
transaction but also the sender’s and recipient’s addresses, both their balances, transaction
history, amounts exchanged and more. We could point out that having a hidden transaction is
not necessary at all, it is more critical to have transactions without information than everything
but visible transactions.

This is where achieving consensus gets hard; how can one create trust in a network deprived of
data/information. It gets even harder to imagine having a DPoS consensus because so much
relies on trust to make this type of consensus work. DPoS can only work if token holders have
the resources to evaluate, control, and eventually sanction their representatives. Any
representative system needs to have a delicate equilibrium of transparency. It is our belief that
in order to achieve an efficient DPoS consensus with a privacy coin, some concessions have to
be made. We will try to present methods allowing to reach consensus while trying to display the
privacy benefits and drawbacks of each one.

We have identified four main areas where friction arises when trying to implement DPoS
consensus in a fundamentally obfuscated blockchain. These points will be addressed
chronologically by following the delegation of voting power through its whole journey.To
understand the challenges of using a DPoS consensus in a privacy coin, it is important to
realize what information is protected/hidden depending on the blockchains.

The challenges of staking and voting in a privacy coin

Before addressing the voting process and the delegates’ election, we will focus on the difficulty
of proving one’s stake in a privacy coin. This will give us a better understanding of the
importance of randomizing the block producer selection. Lastly, we will suggest possible DBFT
implementations for privacy coins.

Staking in a privacy coin: reserve proof



Generally speaking, transparency plays a significant role in the block production process.
Whether a blockchain uses PoW, PoS, or DPoS, every miner/block producer tries to find the
solution to a mathematical problem. Once this problem is solved, the solution is spread out
through the whole network for everyone to see. Achieving consensus would be nearly
impossible without such transparency; transparency is one of the most genuine sources of trust.

As opposed to PoW systems, computing power is mostly irrelevant in PoS based system (DPoS
included). A PoW consensus is a system where candidates to block production are constantly
competing for the block rewards/transaction fees. In PoS, one can only become a block
producer by proving their stake in the network. The stake is represented through a minimum
amount of token/coin locked in a wallet.

In a transparent blockchain - where transactions are public - the network will check the amount
of coins locked per address before starting the block producer selection process.

The mechanism changes slightly in DPoS consensus because holders can not become block
producer directly. As mentioned earlier, a delegate (candidate block producer) need to either be
a top token/coin holder or gather enough vote delegation to enter the delegates list. Whether it
is PoS or DPoS, the block election process requires full transparency on the number of
tokens/coins staked. This is why having a stake-based consensus in a private transaction
blockchain is not easy to achieve without damaging privacy [8] [9] [10].

One of the possible solutions is to use reserve proofs. Reserve proofs were introduced to
Monero in 2018 [11], it allows any wallet to generate a proof of amount. Before this, someone
with a Monero wallet needed to send both his view key and signed key images to an auditor.
Not giving out the View Key prevents the auditor from seeing all the incoming transfers (past
and future). This also means that before the introduction of reserve proofs, staking would have



been very hard to achieve in Monero (and other CN coins) without violating a wallet owner’s
privacy.

Reserve proofs are not perfect though. In a PoS consensus, one only needs to prove he has the
minimum stake required to participate in the block production. This means that one can prove
he has the minimum stake without disclosing how much exactly is in the wallet.

In DPoS, since one is delegating his stake as a vote, the more stake one has, the more he
weights in the network. Through the use of a reserve proof, one needs to display partly or totally
his stake in order to be able to vote.

Another possible drawback of reserve proofs in DPoS is the fact that the reserve proof is set on
a specific amount of tokens/coins. If one chooses their whole balance, every time a transaction
is sent to the wallet, a new reserve proof have to be generated. While not being a concerning
issue, this shows that cold dynamic staking is not possible under this framework.

As we can see, proving one has enough tokens/coins to participate in the network while
maintaining anonymity is hard in a PoS consensus, it is even harder in DPoS because an actor
has an incentive to disclose the highest number of his stake as possible.

This, of course, changes the anonymity level of the blockchain but gives every participant a
choice. On the one hand, someone very strict about his/her anonymity would probably prefer
staking less or not staking at all while maintaining his balance private. On the other hand, some
people do not really care about their balance being fully or partly public, especially if they still
benefit from transactional privacy. Later on, we will discuss what the implications of the staking
mechanism in the delegates’ election are.

Delegates’ election

The addition of reserve proofs in order to add some privacy to the staking mechanism has
consequences on the delegates election process. Since the amount of vote one has in a DPoS
is proportional to the amount staked, the number of tokens/coins one has decided to display
through the reserve proof is the sole driver of one’s weight in the number.

It is important to also note that making one’s reserve proof public will automatically let everyone
else know the number of votes one gets as well as which candidate delegate received these
votes. While this can seem very public for a privacy coin, it answers a democratic need as well
as a blockchain one. Anyone, within and outside the network should be able to verify the
election process. Transparency will create both trust and responsibility from a delegate towards
its electorate.

On the blockchain side, every token holder and every node is informatically able to check
anyone’s reserve proof. Before the election, the algorithm randomly assigns a different number
of reserve proof checks to be executed in order to start the election process. The choice of
randomizing this check was made with efficiency in mind. Checking every reserve proof at the



beginning of each election round would be extremely time and computing-consuming. The
random check solution is satisfyingly good on both regards.

To stay consistent, and in order to promote delegates’ responsibility, the activity of a delegate
remains public. This way, any of its supporters can verify the number of blocks that were
produced, the reward perceived, and any transactions to make sure the block reward was
distributed according to votes repartition.

Once again, this solution appears satisfying in regards to the democratic process but give out
more privacy than one could wish. Just like token holders can choose between taking part in the
block production through a vote, delegates can decide to remain partly anonymous.

Even though a delegate’s wallet is completely public, the person/organization behind the node
can decide to remain anonymous. The people still remain in power and decide whether a
person/organization is trustworthy enough and deserve to be elected as a delegate.

Staying private and reaching consensus

Block producer selection through VRF

As stated earlier, most DPoS consensus base the block producer selection on a round-robin
scheduling algorithm meaning delegates are given in turn an equal opportunity to create the
block (equal time slice) [12] [13]. If a block producer fails to create a block, its turn is skipped
altogether and the next delegate in line becomes the new block producer. Such scheduling
scheme is used in blockchains such as Lisk and Tendermint.

This scheduling’s most significant benefits are its predictability and fairness, which explain its
extensive usage. The predictability can also be an issue, in an area as competitive as block
generation where financial retribution is involved, there are many incentives in exploiting
predictability.

Blockchains have used different methods to randomize block production. In PoW, block difficulty
and competition are based on chance [14] [15]. In PoS, the nodes’ chances are sometimes
based on the amount of coin they stake [16]. In DPoS, randomization could prevent staking



optimization (changing one stake’s destination or usage) and attacks. For example, if a delegate
knows the positions occupied by its competitors in a round-robin, he could DDOS attack them
before their turn comes, thus skipping it. This could be motivated by the level of fees or simply
because diminishing the split makes the whole pot bigger.

For example, Peercoin uses what is called a “coin-age” parameter where the longer the coins
have been in a node/wallet (90 days limit), the better the chances of being the next block
producer. Every time a block is generated, the coin-age value is consumed and comes back to 0
- diminishing the changes of producing the next block greatly.
Reddcoin uses a similar mechanism, but the coin-age function is nonlinear instead of limited to
a maximum to make older coins age slower than newer ones.

There are plenty more ways to randomize the block producer selection but making a choice can
have various consequences. Overall, using randomness in the selection of the next block
producer diminish the threat of attack every delegate faces during the block generation round.
On the long run, it is also a fair way to spread block rewards equally between network
participants.

To achieve randomness in the selection of the next block producer, we have chosen to use
Verifiable Random Functions (VRFs) [17] which are already used in some DPoS based
cryptocurrency such as ONT (Ontology) [18] and ADA (Cardano) [19] [20]. VRFs were
introduced by Silvio Michali, Michael Rabin and Salil Vadhan [21]. They are pseudo-random
functions providing a public and verifiable proof of the output’s correctness without requiring the
secret key used to generate the function. With VRFs, anyone with access to the public key
would be able to verify the randomness of the block producer selection process without being
given the secret key to generate the random function used.

DBFT implementations

Through its redundancy and consensus mechanisms, Blockchain is one of the most successful
Byzantine Fault Tolerant systems. In the case of Bitcoin (and PoW), the blockchain is replicated
as many times as there are nodes in the network. One of the reasons DPoS is deemed more
efficient than PoW or PoS is the fact that BFT consensus is reached with lesser redundancy. In
consequence, the network is still resistant to error or misinformation while being far quicker.

To improve speed, some DPoS blockchains have chosen to reduce the number of delegates
even further [22]. Others have decided to use what are called “consensus nodes”. These are
usually different than delegates but can sometimes be one or several elected delegates. A
consensus node’s role is to establish the consensus truth. It usually receives new blocks and
checks them for errors and tampering. If the consensus node agrees with the data contained in
the block, it will transmit the latter to all the delegates except the one who created the block. If
the majority of the delegates agrees (usually 67% of the delegates), the block is validated and
added to the blockchain.



One of the most often used contestations against DPoS is the fact that the consensus protocol
happens between a reduced amount of nodes - the delegates. By delegating their votes, token
holders have also delegated the block verification process.

On the EOS blockchain, only 21 consensus nodes/delegates [23] produce and validate the
blocks which have raised some concern among the community. This has the benefits of making
the blockchain faster but detractors argue that it also makes the blockchain very centralized in
the hands of a few actors. Reducing the number of delegates also increases the ease of setting
up a cartel where delegates gain and retain control of the network. Such unhealthy behaviors
are currently one of the biggest challenges DPoS will have to overcome has several
cryptocurrency projects such as EOS and Lisk have been affected by this.

In an ideal world, everybody in the network should be checking a block’s validity. Unfortunately,
most token holders do not necessarily want to set up a node to perform this verification process,
and it also reduces the overall performance of the network. This is why in practice this task is
usually delegated to the rest of the delegates.

There is no absolute number in terms of consensus node and delegates when it comes to
Byzantine Fault Tolerance. The only constant that appears is that a higher number of replication
there is, the more resistant the blockchain is. It also appears than the number of validators is
inversely proportional to the blockchain’s efficiency - energy consumption and quickness. In the
specific case of privacy coins, users seem to value more decentralization and tolerance to
failure above efficiency and this is why we have usually tried to opt for a higher number of
delegates.

X-Cash implementation of DPoPS
This section covers the way we implemented DPoPS in X-Cash. This description addresses the
processes which have to be modified in order to adapt block creation and Byzantine failures.
The delegates election process is addressed first because it modifies the fundamental rules of
block creation – going from PoW to DPoS. Then, we explain and detail the VRF usage allowing
to randomize the block producer selection process.

Please note that this is a technical implementation of the DPoPS explained earlier. While there
is some theoretical explanation attached to the integration, most of this section addresses its
practical and technical points – database, functions, data transmission processes, and more.
We have added commentaries to each section that can be read as warnings on the difficulties
as well as a summaries.

Delegates Election Process

Reserve Proofs



As described in the previous section, reserve proofs are cryptographic proofs used to confirm
that an address holds a specific amount of cryptocurrency. In Cryptonote, these proofs are used
to reveal this information without disclosing the private view key of the wallet. In X-Cash DPoS,
these proofs are a core component of the DPoPS consensus as they are used as votes for the
delegate election process.

From a technical standpoint, a reserve proof is a cryptographic proof where one can prove that
a wallet's balance falls between two amounts and are similar to the range proofs used in
cryptonote [24]. Those amounts by default are 0 to ((2^64 ) - 1) and expressed in atomic supply
(meaning for X-Cash that each coin is composed of one million atomic coins). Because the
lower range is always the same as the upper range, it is better stated that the wallet's balance is
at least X amount. Range proofs are a commitment validation that uses Pedersen
Commitments.

Pedersen Commitments are a commitment scheme where:

With:

a = amount
x = mask
G = ed25519 basepoint

Note: is multiplied by 8 to make sure that the results are on the main subgroup of the ed255519
curve.

In the voting system, both upper and lower limits of the range proofs are set to be equal and
correspond to the full wallet balance:

$$ C_lower=C_higher=FullBalance*H-C $$

This implies that a wallet can only vote with its full balance and for a unique delegate. Therefore,
if one wishes to vote for multiple delegates using a single wallet, they will first need to split the
balance across multiple wallets.

dBFT Decentralized Database

The switch to a DPoS based consensus algorithm involves additional data used in the process.
This data involves various information such as delegates identifier id, vote counting, delegates
ranking, and in the case of X-Cash DPoPS reserve proofs, among other more specific data.



To guarantee and improve the decentralization, it is crucial to keep this data stored in a
decentralized manner among the network participants. For technical reasons, it has been
decided to keep this data off the main chain. These reasons include a need to improve latency,
data bandwidth, as well as not impacting the main chain with data that would not be relevant for
the long term. For instance, storing the reserve proofs on chain would lead to adding data that
quickly becomes non-pertinent once the reserve proof has been spent.

For this reason, it has been chosen to rely on a decentralized database that is stored off-chain.

Database type and uses.

For higher performances and scalability potential, it has been chosen to go for a NoSQL
database type using MongoDB. The estimated data pushed in the database is estimated at 10
GB per year with a possibility to archive the data after a certain period. The database will be
used to cover four cases:

● statistics of the DPoS system, history of delegates ranking, reliability statistics, historical
block producer data … etc.

● Registered delegates: data linked to delegates details, identification ID, owner, location,
IP address… etc.

● Reserve proofs: storing of all reserve proofs used in the voting scheme. For a reduced
syncing time, the reserve proofs are split into 12.5 MB chunks.

● Reserve bytes: VRF data (keys+random strings), next round block verifiers public
addresses, current round block verifiers signatures… etc.

Consensus and characteristics.

The consensus with regards to the database content is achieved at every round through a dBFT
vote. Every round of block forging, the delegates also compare their database content by
sharing the hash of it. A regular dBFT vote process is then carried so that all delegates can
align on the same version of the DB.

Data stored details.

delegates

Name Type Requried Purpose

public_address char* True The public address of the
delegate

total_vote_count char* True The total vote count that
the delegate has received.



total_vote_count_number long
long int

True Same as the above just
stored as an int

IP_address char* True The IP address of the
delegate

delegate_name char* True The username of the
delegate

about char* False About the delegate

website char* False The delegate’s website

team char* False The delegate’s team

pool_mode char* True If the delegate is running a
shared delegate structure
or not

fee_structure char* True The fee the delegate will
charge if running the pool
mode (can be 0 if pool
mode is false)

server_settings char* False The server specs of the
delegate

block_verifier_score char* True the block verifiers score for
invalid reserve proofs

online_status char* True The current online status of
the delegate

block_verifier_total_rounds char* True The total rounds the
delegate has participated in

block_verifier_online_total_rounds char* True The amount of rounds that
delegate was online for and
participated in



block_verifier_online_percentage char* True The percentage of the
above two fields, used to
show the stability of the
delegate for staking
information

block_producer_total_rounds char* True The total rounds the
delegate has been the
block producer

block_producer_block_heights char* True A list of block heights the
delegate wa the block
producer for

statistics

Name Type Purpose

most_total_rounds_delegate_name char* The delegate
name of the
block verifier that
has participated
in the most total
rounds

most_total_rounds char* The amount of
the block verifier
that has
participated in
the most total
rounds

best_block_verifier_online_percentage_delegate_name char* The delegate
name of the best
block verifier that
has the least
amount of time
outs



best_block_verifier_online_percentage char* The percentage
of the best block
verifier that has
the least amount
of time outs

most_block_producer_total_rounds_delegate_name char* The delegate
name of the
block verifier that
has been the
block producer
the most

most_block_producer_total_rounds char* The amount of
the block verifier
that has been
the block
producer the
most

reserve proof(x)

Name Type Purpose

public_address_created_reserve_proof char* The public address of the user that
is staking

public_address_voted_for char* The public address of the delegate
that the user staked towards

total char* The total amount of the reserve
proof

reserve proof char* The reserve proof

reserve_bytes(x)

Name Type Purpose



block_height char* The block height

reserve_bytes_data_hash char* The SHA2-512 data hash of the reserve_bytes field

reserve_bytes char* The network block with all of the VRF data in the
reserve bytes.

Processes and functions

Updating delegates information.

For the delegates to update their information in the database, we can distinguish three
functionalities:

● add a delegate to the database
● update delegate information in the database
● remove a delegate from the database

These features are achieved through a simple process where delegates are sure they're
communicating with all elected block producers.



Delegate first request the block verifier list from a random seed node and then contact all
delegates to perform the wanted operation (add, modify, remove). Each operation is signed
using the delegate’s private key so as long as it is matching the signature stored in the block
producer database, the data will be updated. In this step, no vote is performed and each block
producer modifies their data independently. The consensus will still happen as there is a vote
among the block producer on the content of the database at the beginning of each round.

Syncing database collections.

Statistics and Delegates



The statistics and delegates databases are synced using the same process. First, the delegate
requests the list of block verifiers and then compute a hash of its database. This hash is shared
with all delegates, which then replies if the hash matches theirs. If yes, this implied that the
delegate shares the same database content as the queried block producer. The delegates
aggregate the results from all block producers and identify the resulting consensus on its
database status. If block producers agree under de dBFT rules that the delegate does not have
a synced DB, this last one will start syncing the DB from a random node in the consensus.

Reserve proofs



Reserve proofs are decomposed into 50 collections which each hold up to 1000 reserve proofs.
The syncing process of these collections works in a similar fashion as the syncing of the
statistics and delegates syncing collection process except that the delegates have to loop
through the 50 collections individually.

Reserve bytes



Finally, the reserve byte collection is synced based on the local height of the delegates. As the
reserve bytes are linked to the height of the blockchain, they do not need to be refreshed if they
have been synced once. In practice, this means that the delegate will compare it is local height
to the network height and only syncs if he is lagging behind. This can happen if the delegate is
syncing the database for the first time or if a new block has been forged.

Delegates election process. Receiving and validating reserve proof



One of the main processes of the delegate election is to add the users’ reserve proofs into the
database. This is achieved through the following process; users generate a reserve proof in
their wallet and share it with all block verifiers. Once they receive it, each delegate is going to
compare the reserve proof to its version of the decentralized DB, if the reserve proof is already
in the DB, it will not be counted. If not, the block verifier will check the reserve proof validity in
the blockchain. If the reserve proof is still valid, any reserve proof belonging to the public
address of the reserve proof will be deleted from the database. Once this is done, the reserve
proof can be added. Since there are multiple reserve proof collections, and to make sure the
consensus of each collection is respected, it is crucial that all delegate add the reserve proof to
the same collection. Therefore, the reserve is added to the first unemptied collection starting
from 1 to 50.

Verifying reserve proofs.

Verifying the reserve proofs inventory is a key process of the X-Cash DPoPS. Because this step
can be quite intensive in terms of computing load, this has to be done in a decentralized manner
where all delegates do not have to check every single reserve proof every round. The process



we have chosen to follow is to run on a separate thread a random reserve proof checker for
every delegate.

Every block producer extract and checks a reserve proof from the decentralized DB randomly. If
the reserve proof is invalid, the block producer will first verify if it has already identified as invalid
during the round. If no, it will add it to a local buffer of all invalid reserve proofs it has identified.
When the round is closed to be finished, block producers share the proofs they have identified
to be invalid, and a dBFT vote is carried to create a consensus on the reserve proofs to remove
from the database. Once this is finished, every delegate updates their local version of
decentralized DB in preparation for the next election round.

During this phase is also computed a delegate score. This score is based on the number of
invalid reserve proofs a delegate has found. This is done to incentivize the delegate to
participate in the reserve proof checking process by creating a ranking and publish it. Currently,
we have chosen only to compute the score in an indicative manner and not include it as part of
a potential penalization process. Based on the reception of this indicator and the participation of
delegates in the process, we will review the impact of the score.



Block producer election.

The effective 100 block verifiers election is the final element of the election process. This is
carried during the block production process after the block has been produced and voted by all
block verifiers. In practice, block verifiers vote and elect the block verifiers of the next round.
This implies that the block verifiers list is updated on a block basis.

During the block creation process, after verifying the block and the validity of the transactions,
block verifiers sign the block and perform a final dBFT vote. After this step, the next block
verifiers election start. Because the block verifiers share the same version of the decentralized
DB which is also checked at the start of the round, they can perform a dBFT vote on the list of
next verifiers. If a consensus is reached, they add the reserve bytes linked these verifiers into
the decentralized DB as well a hash of it within the block for further data validation.

Commentary and Conclusion

By choosing to carry the election of the delegates every round, our goal to enable a fast
rebalancing of the delegates in case of unwanted behavior. Indeed, such a process is allowed
by quickly removing invalid reserve proofs (=canceled votes) as well as excluding a block
producer if it does not meet the eligibility requirement. While we understand this can raise a
concern with regards to political stability, we hope it will lead to healthier behavior among the
delegates.

Another challenging issue is raised by the fact that reserve proofs are checked randomly by the
block producer. This potentially leads to the fact that an invalid reserve proof could not be
selected for checking during a specific period. To address this issue, we have assessed the
survival probabilities of an invalid reserve proof under full staking (50,000 reserve proofs of 2M
XCASH). At 300 random checks in the network per second (derived from 100 delegates
verifying at one reserve proof per 300ms) we estimate an invalid reserve proof to be identified in
less than 500s, 96.5% of the time. This means that most reserve proofs will be invalidated after
a few block maximum. Combined with the need for several confirmations on the exchange, we
believe to be exempted from potential short term voting+market arbitrages situations.



We are still reviewing how this process could be improved, notably by involving external nodes
in the verification process in exchange for compensation.

Through the use of reserve proofs, a decentralized database and a decentralized process of
reserve proof verification, we are able to provide a safe and efficient ground for the delegates
election process. This processed is carried each round where the current round block verifiers
elect the 100 next ones. By combining the storage of the delegate's details in a decentralized
reserve bytes collection with a hash directly stored in the blockchain, we are able to guarantee
the data validity and integrity without compromising the blockchain size.

Block producer Selection Process

Verifiable Random Functions

What are VRFs.

VRFs are used to guarantee that the block producer selection is effectively random. The
reasons for this has been discussed in the previous part of the document is mainly justified by a
needed increase in security. Indeed, random block producer selection based on VRF makes the
list of next block producers unpredictable and therefore leads to higher complexity of performing
malicious attacks.

From a technical perspective, VRFs are pseudo-random functions that give a verifiable proof of
the correctness of its output [25]. The pseudo-randomness nature of the function means that
based on a set of input, the outcome of the function will always seem to be random, although it



can be deterministic. The key added value of VRFs comes with the fact that they come with
verifiable proof of their correctness meaning that the person who ran the function can prove to
someone else that the result of the function did come from running the function itself and is not
a number generated from an external process.

In practice, through the generation of a secret and public key pair (), one can compute a beta
string output based on any input value (referred to as the alpha sting) while also generating a
proof of correctness .

Later on, this person can prove to anyone that is correct with respect to the PK and VRF.

VRFs Properties.

We recall below the main properties of VRFs:

● Time complexity: the execution time is constant and independent of the length of the
alpha string

● Uniqueness: impossibility to create two unique proofs that would verify the same set of
public key, alpha, and beta string.

● Collision resistance: impossibility to create two alpha string that would generate the
same beta string

● Random uniqueness: impossibility to predict the output of the function

Integration of VRFs in the DPoPS

Both RSA (RSA-FDH-VRF) and Elliptic Curve (ECVRF) can be used in VRF for the key
generation. We have chosen to go for ECVRF, primarily because this gives the same level of
key strength while shortening the length. For the cryptographic components, the Libsodium
library [26] is used in combination with the Algorand integration of VRFs [27] [28].

More info about the VRF integration can be found in the VRF functions section of X-Cash
DPoPS on Github[1].

Overview of the process

Guaranteeing the randomness of the next block producer selection is a key feature of X-Cash
DPoPS. This process is decomposed into three major steps:

1. VRF Keys Generation: each delegate generates a pair of Secret and Public keys as well
as a one-hundred-character string

2. Ranking Hash Generation: delegates aggregate the keys and strings of others and hash
it

3. VRF Keys Random Selection: delegates extract from the ranking hash the keys that will
be used to perform the VRF

4. Next Block Producer Calculation: delegates use the key and random strings to perform a
VRF and determine the next block producer selection

https://github.com/plbgnt/gitbook-xcash/tree/211a66b23e834654c24df65f6f2ab37240947c90/X-CASH-official/XCASH_proof_of_stake/tree/master/functions/VRF_functions/README.md


Detailed process

During the first step of the process, each delegate generates a set of Secret and Public VRF
keys as well as a one-hundred-character string. This set of information is shared among all
delegates so that every delegate owns the set of all other delegates.

The next step consists in ranking the strings and keys according to delegates position in terms
of stake votes. Because all delegates have shared and received the same information while
viewing the same ranking of stakes, the end rankings should be the same across all delegates.



Once this is done, delegates concatenate the one hundred-character strings with the previous
block hash and generate from it a SHA2-512 hash. From this hash, they extract a byte that will
be converted into a 1-100 number through the process described above. At this point, all
delegates are still expected to be computing the same number, which corresponds to the rank of
delegates from which the keys will be used to perform a VRF.

The final step of the process consists of performing the VRF using the keys of delegates that
was selected in step 3. In the final step, the delegates extract from the VRF beta string 6
delegates number: the first one being the next block producer and the 5 others being its backup
nodes. The extraction is done in a similar manner where the bytes of the beta string are
sequentially processed into a delegate number. Similarly, to step 3, each byte is selected if
below 200 in decimal value. Additionally, each block producer and backup nodes can be only
selected once so in case of double selection the byte is skipped to the next one.

Each step involving calculus is also verified and validated through a dBFT consensus vote. The
underlying goal of the voting is to create a final consensus on the result of these steps to allow
nodes with a discrepancy to catch back on the process. This also enables to potentially identify
the malicious nodes in the network that would diverge on a regular basis of the network
consensus. The dBFT vote is done during the following step of the process:

1. Delegates keys and random string aggregation
2. Alpha string for the delegate ranking extraction and VRF
3. Delegate ranking number for the VRF key selection
4. VRF Beta string

Commentary and Conclusion

Some interesting comments can be made on the Block producer election process. The first
ones concern the random one-hundred-character string generation which is supposed to be fully
random. This is currently set up this way in the GitHub version of X-Cash DPoPS but nothing
prevents delegates from generating a customized version of the string. This means that
delegates can submit any string to the others and this could challenge the randomness nature
of the block producer election. In practice, as the string is bundled with the other delegates’ and
after hashed there is no determinism in the election of the delegate’s secret and public key.

Given that we are extracting the VRF key node number from a 64-byte SHA2 and that we are
excluding the byte higher than 200, this could potentially raise a question of having a hash that
doesn’t contain a usable byte. Out of 64-byte, that probability is 5.7E-43. Therefore, the odds of
such event occurring are considered low enough. Similar reasoning and conclusion can also be
applied to the block producer and backup extraction from the VRF beta string. In the case of the
calculation running out of bytes to choose, the main seed node will create the block for that
round, to ensure the blockchain does not get stuck.

Through the use of VRF and dBFT consensus within the next block producer selection process,
we hope to offer a new variant of this process that is efficient, reliable, and fault-tolerant. The



random block producer selection process is a critical component of DPoPS as it prevents
anticipation and improves security. Over the next upgrades and through the feedback from the
community and the first implementation, the process will be improved with both new features
and efficiency enhancements.

Block Creation Process

The modified block creation process is presented in this part by diving into how we addressed
the chosen DBFT protocol and used it in DPoPS. For the easiness of reading, we are not
covering the full details inherited from the CryptoNote block creation process [29], but only
focusing on the enhancements we have made. The section also highlights both the daemon
syncing process and data transmission protocol which we had to create.

dBFT Consensus

The consensus method used in the X-Cash DPoPS is an application of the dBFT consensus
protocol with some notable changes compared to the existing implementation of dBFT in
cryptocurrencies consensus. It has been previously discussed how the block producer selection
is made through VRF while not all consensus related data are stored on the blockchain.

We have chosen to go for a rather simple implementation of dBFT where delegates submit a
data to be voted on and hash it. By then exchanging all hashes among all delegates, they are
able to quickly determine if the other delegates have the same resulting hash.

This method is quickly used to determine if a consensus is generated among the delegates on
any resulting output of a given function.

In a given set of N = 3n +1 delegates, we need 2n+1 delegates to reach a consensus in order
for everyone to accept it.

Block content under DPoS

Although the philosophy of the block remains the same, i.e. holding transactions, the structure
of the block is significantly evolving under the X-Cash DPoPS to adapt to the various changes it
implies. The most notable one is the need to track and record the consensus on the election of
the delegates. For technical reasons, that are described in section 0, some of this data is stored
in a separated decentralized database where dBFT rules also apply. The goal of this section is
to dive in the structure of the block and explains how it is linked to the decentralized DB to make
sure that the blockchain core principles still apply.



By using a delegated Proof-of-stake consensus, there is a significant increase in the data
quantity used to perform the consensus. This data is stored in the reserve bytes section of the
decentralized database. It includes the block producer name, its public address, and all the data
linked the VRF production and the next round block verifiers. To guarantee the traceability and
the integrity of this data, we need to find a way to have it reflected on the blockchain.

This is done by concatenating the reserve bytes data with the full content of the block to be
produced and hash it. The resulting SHA2-512 is added to the block under the reserve blocks
data variable, and then the block can be finally hashed into what is known as the block hash.
Using this method, any nodes in the network including delegates can easily verify a posteriori
any block in the chain as well as its pending reserve bytes data in the decentralized database.

Daemon syncing process

To adjust for the change of algorithm, it is also required to upgrade the daemon syncing process
to take into account the need to also check the block producers and verifiers. We provide below



a high level of this process which consists of first retrieving the list of block verifiers from a
random seed node. The next step is to randomly connect to one of them and request the
reserve bytes for both the previous and current block.

To validate the block, the daemon will check if the previous block 100 public addresses (i.e. the
expected 100 block verifiers for the next round) matches the one that signed the current block. If
67 or more do so, then the block is considered to be valid and is added to the local version of
the blockchain. If not, it will be skipped, and the daemon will request the block from another
block verifiers.

Data Transmission Protocol

Summary.

To enable a fast and efficient communication among the delegates as well as adding the
necessary functions to perform the consensus, we have created a set of data templates that we
describe as the Data Transmission Protocol. These templates are separated into 4 main
categories:



1. Block verifiers verification processes
2. Delegates commands
3. Blockchain syncing processes
4. Database syncing processes

The purpose of this section is to describe the primary components and purposes of these
templates. More details can be found in the dedicated section of the DPoPS Github[2].

Delegates identification processes.

To make sure that delegates are not impersonated, we have set up an identification process
used in all delegates to delegates communication. This process mainly relies upon validating a
signed message from a delegate, to ensure that they actually sent the message. Along this data
is shared some additional information to guarantee that the delegates communicating are
synced both in terms of blockchain and consensus status. The previous block hash is included
to ensure that an elected delegate can not perform a replay attack with valid data in a different
round. The current round part and current round part backup node, are included so an elected
delegate can not perform a replay attack in different sections of the current round:

● previous_block_hash - The previous block hash.
● current_round_part - The current round part (1-4).
● current_round_part_backup_node - The current main node in the current round part

(0-5)

All messages involving a delegates authority will be signed using the delegates private key,
corresponding to their registered public address that is stored in the decentralized database.

Templates.

The below figure gives a high-level overview of the templates used in the data transmission
protocol. A more detailed description of each function can be found APPENDIX 0.

https://jbt.github.io/markdown-editor/yellowpaper-delagated-proof-of-private-stake.md


Detailed process

In this section, we describe the typical process for a block production round. Before launching
the block creation process, the 100 elected delegates perform a VRF according to the process
described in section 0. The resulting beta string will be included in the produced block to
determine the next block verifiers and producers.





The next step consists of extracting each delegate’s role from the last beta string included in the
last block. Each delegate is assigned a role of being a block verifier (validator) or producer in
addition to potentially being a backup node for the validators. There are five backup nodes
which can be used in two cases. The first one is the case where there is a technical failure of
the block producer such as a disconnection from the network or high latency while the second
one is the case where the network fails to reach consensus on a dBFT vote.

Once the roles have been assigned, the delegate will start creating its version of the next block.
The block is composed of a header and the transaction content. The block header detailed data
is given in APPENDIX X.X, and the transactions will be taken from the mempool at the
discretion of the block producer in the same manner as in the original Proof-of-work process
where miners were given a financial incentive to include the more rewarding transactions.

Once the block is finalized, two dBFT votes will be generated among the network of delegates.
The first vote validates the block validity (VRF data, hash… etc) while the second vote validates
the transaction content. If this step is successfully passed, the block will be signed by all block
verifiers, and an additional dBFT vote will be carried to confirm the signature step.

The next step consists in carrying the election of the next 100 block verifiers. This is done by
carrying a dBFT vote on the delegates stake ranking in the decentralized database. Ultimately
the reserve bytes data of the block are added to the decentralized database, the block hash is
completed and the block is added to the blockchain.

Commentary and conclusion

The decision to offload some data in a decentralized database can be challenged as the
blockchain cannot be fully verified on a standalone basis anymore. This is true for the detailed
delegate data although the core structure of the blocks remains the same. This approach is also
interesting for two reasons, first of all, it will allow the blockchain to not increase due to this
additional data. Secondly, the decentralized database will potentially allow new features that are
under reflexion now: smart contracts, DLT based data storage, DLT based tokenization … etc.

Some concerns have also been raised about the block time increase to five minutes. This
increase is made on purpose as the mainnet will progressively switch to a full settlement layer
for big transactions only. By increasing the time, and also potentially the transaction fees, we
hope to create an incentive for transactions to happen off mainnet through the sidechains and
side channels.

The block creation process remains relatively heavy in terms of steps, dBFT votes, overall data
consumption, and some challenging questions can be made on the data it will consume. Our
estimates suggest that the overall network data consumption needed to create a block will be in
the 1.5 GB range on average or 15 MB per delegates. Over the cycle of the block production,
this represents an average needed bandwidth of 50 kB/s with peaks of 500 kB/s. This is an
interesting metric as it shows that the bandwidth of the servers will be high enough to manage
the mainnet and also shows great potential for the further scalability through sidechains.



Implications of DPoPS on X-Cash and the cryptocurrencies

The goal of this section is to explore the implications – namely related to economic and
scalability - that DPoPS will have on the X-Cash ecosystem and other CryptoNote coins
exploring the possibility of adopting DPoPS. Finally, we will explain our vision for both X-Cash
and DPoPS in the future and the evolution we will implement.

X-Cash economics implications

Block reward and coin emission.

The block reward scheme will remain the same under DPoPS as in POW beside the following
changes:

● block-time increased from two to five minutes
● block reward multiplied by two

The reasons for this change are multiple. The first one is justified by the fact that there are no
alternative chains under DPoPS and therefore the number of confirmation to consider a transfer
to be valid can be greatly reduced, notably from an exchange perspective. This means that fast
block time is no longer needed as the confirmation time will be greatly reduced. The second
reason is that once sidechains will be deployed, the mainchain will act as a settlement layer for
these subchains meaning that users’ transactions will be directly carried in these sidechains.
Sidechains block time will be customizable and it is therefore expected that sidechains
dedicated for payment will be created with a block time in the magnitude order of the second.

Behind this philosophy relies the goal to keep a low transaction time and capacity on the
mainnet which will mechanically induce higher transaction fees not compatible with
micropayments. This implication is wanted and needed to avoid filling the mainnet with
unnecessary transactions. Indeed, every transactions’ consensus and security level should be
in line with its need. Through these mechanisms, we hope to progressively create an incentive
from both a market and transaction time perspective to offload transactions on sidechains.

Mining price and market flow.

An interesting impact of switching the DPoPS from a mining perspective is the reduction of the
marginal cost of creating X-CASH. In PoW, the costs of mining can be decomposed in fixed
hardware costs and marginal costs from electricity consumption. In DPoS, the collateral needed
to participate in the consensus can be assimilated as fixed costs but once this is paid for, there
are no marginal costs of minting token.

This has great implications because, from a market flow perspective, we can expect that this will
increase the ratio of hold vs. sold coins. Indeed, under PoW, miners are more likely to be
tempted to sold part of the mined coins because they need to cover for the electricity costs.
Under DPoS, not only do they not need to do it because the marginal costs are null, but they are
also incentivized to keep the coins if they want to keep their stake constant relative to the



circulating supply. Because the supply is increasing from the mining process, selling the coins
would lead to having a voting market share decreasing over time. For people running full
delegates node, this implies that they can potentially lose their ranking if they do not stake back
the proceed from block forging.

Effective vs isolated circulating supply.

The switch to DPoPS also introduces a new form of supply: the isolated circulating supply.
Under PoW, we distinguish three supply. The circulating supply which describes all the coins
that have been mined and in circulation, the segregated supply that has been mined but that is
locked in a specific wallet and the total supply which includes additionally the supply to be
mined. Under DPoPS, the circulating supply is broken down into the effective vs isolated supply.
Because circulating coins need to be locked in order to stake, this induces additional
segregation of coins estimated at 40-60% of the circulating supply.

This leads to a lower effective circulating supply which usually has positive impacts on the price
of the coins but arises at the cost of reduced liquidity.

Market of sidechains.

The key objective behind DPoPS is to pave the way for the next step which is the sidechains.
While this subject is tackled in the next section of the paper and will be covered in a dedicated
paper, we can highlight the potential positive impacts of sidechains from a financial perspective
for delegates. When sidechains are released, delegates will be given the opportunity to host
sidechains.

This will materialize in through a decentralized market where delegates will post their bids to
host sidechains and be paid in XCASH. The typical metrics used here will be
XCASH/kB/delegate for transactions and XCASH/kB/delegate/mo for storing. Based on this, we
can see that XCASH will act as a gas in the network to run sidechains. On the other end,
clients, consumers, and users will be able to buy sidechains from these bids and create their
own subnetwork where the consensus, storage and transaction processing will be carried by
delegates.

From a delegates perspective, this means that an additional source of revenues will be
generated, increasing the yield of the collateral used for the delegate election. From a user
perspective, this also leads to lower transaction costs for a given expected return on collateral.

Addressing scalability

An infrastructure for further deployments.

Thanks to DPoPS, we will have a more flexible network while still having a high level of
decentralization (similarly to bitcoin and other PoW cryptocurrencies, the mining process has
lead to the concentration of the mining power into a few mining pools, raising a concern about
decentralization). In terms of flexibility, this will translate into a dynamic number of delegates if



needed to better match the need for further/lesser decentralization. The new consortium of 100
delegates will also provide better coordination among the network and more particularly for the
testing phases which are critical for the next developments.

Sidechains.

Summary.

Sidechains will be next major upgrade of the network and will happen once DPoS in in place
and working accurately. Sidechains are parallel blockchains that relies on X-Cash from a
technological and consensus perspective. Sidechains can be described as fork of X-Cash
where the consensus is still managed by the mainnet operators and under similar rules. The key
difference relies upon the fact that sidechains are managed by only a subset of mainnet
delegates which leads to great implications such as lower costs, faster consensus and higher
flexibility at the cost of less security.

Consensus protocol.

In the first iteration of sidechains, the consensus protocol will be the same as the mainnet, i.e.
DPoPS. This means that similarly to the mainnet 2x+1 delegates will be needed to reach a
consensus raising the minimum number of delegates needed to run a sidechain to 4. In the next
version, our goal is to allow a wider range of consensus types such as proof-of-work,
proof-of-authority, and proof-of-identity.

Settlement layer.

Sidechains will offer the (non-mandatory) feature to use the mainnet as a settlement layer.
Transactions made within the sidechains will have the possibility to be pushed back and settled
on the mainnet where sidechains will be used to carry less important transactions while the
result is still recorded on the mainchain. This feature will be a key component of the network
scalability as it will allow transactions to be carried off the mainnet while still having a high and
satisfactory level of decentralization and security.

Type of sidechains.

We can distinguish two type of sidechains, X-CASH based sidechains, and data-based
sidechains. The first one has a pure monetary purpose where people can send X-Cash at lower
costs while also allowing for higher scalability. Thanks to the settlement feature, when the
sidechain is closed, the remaining unspents (=balances) will be pushed back to the mainnet.
From a scalability perspective, these sidechains will allow a drastic increase of the transaction
per second as each sidechain will be able to carry between 10 to 20 transaction per seconds
while the number of sidechains that can be run simultaneously is virtually unlimited.

On the other hand, sidechains will have the possibility to be data-based without involving the
transfer of X-Cash. These type of sidechains will be used for a wide range of use cases where
fiduciary token are not necessarily needed: supply chain, voting, … etc.



Not only sidechains will allow higher scalability in terms of transactions output, but they will also
help the long term viability of the mainnet by reducing its size increase thanks to the offloading
of non relevant transactions. Because sidechains can be deleted without impacting the mainnet,
this also means that archiving is possible, guaranteeing the long term scaling of the
infrastructure.

Side channels.

Side channels are similar to sidechains in the way that they are used to offload the mainnet from
transactions. The key difference in terms of features is that they only carry monetary-based
transactions that include X-Cash or tokens. From a technical perspective, side channels consist
in locking a portion of the coins stored in the blockchain via a multi-signature scheme or smart
contracts within a set of predefined participants. Each transaction will be shared and signed by
the participants without being broadcasted to the network. This allows creating multiple
transactions while only having the ultimate one written on the blockchain, saving transaction
fees and enabling almost instantaneous transactions.

Future of DPoPS

A layer set to evolve.

This first iteration of X-Cash DPoPS aims at setting up a new protocol with core features
enabling an efficient and secure consensus to happen. Thanks to the feedback from the
community, our goal is to improve it in the next iteration while also adding the next features that
will allow additional use cases.

From an X-Cash perspective, the release of DPoPS will also introduce a new way of
open-sourcing its development and involve further the community. Through the voting system,
delegates will also be the voice of the community and will guide the next steps of developments.

Being a precursor for DPoS implementation in privacy based coin.

Currently, most privacy coins rely on PoW consensus and switching to a stake based system
can be challenging due to the opacity of the balances. Through the DPoPS algorithm, we hope
to be a precursor in the research of this field and will allow successive improvements, potentially
made in cooperation with other coins.

From a research perspective, we want to stick to the open-source philosophy and give back as
much as we have taken over the pasts years. For this reason, any development related to
DPoPS will remain open source under

A consensus algorithm that can be reused and adapted for all coins.

The switch from a PoW consensus to a more energy-efficient algorithm will be a key challenge
in the next years for all cryptocurrencies including bitcoin. Thanks to the DPoPS consensus
algorithm we hope to have built a framework that can be derived to be adapted in any coins. We



strongly believe the democratic nature of DPoS combined with privacy features that can be
implemented in any coin can offer an interesting environment for a cryptocurrency to evolve.

Conclusion
X-Cash started as an open-source cryptocurrency focusing on privacy and decentralization.
While CryptoNote offers state of the art privacy based on ring signatures and stealth addresses,
it also limits the blockchain potential in terms of capacity, transaction output, and features.

The X-Cash team’s vision is to offer the most flexible cryptocurrency possible – enabling public
transactions, sidechains hosting and side-channels payments – and is, therefore, proposing a
network upgrade to become more scalable. Our vision is that DPoS offers the best tradeoff
between security, scalability, and decentralization.

Implementing any stake-based consensus algorithm in a privacy coin can be challenging. For
X-Cash, the choice has been made to use reserve proofs for stake verification combined with
the release of a specific protocol that allows a standardized and secured communication in the
network.

From a blockchain consensus perspective, it has been chosen to use a process where all block
verfifiers validate every steps through a dBFT based vote. This allows an additional layer of
security while also relying on verifiable random functions for the selection of each round’s block
producer to further guarantee the resilience to malicious attacks.

Through this upgrade, the X-Cash team is also introducing an additional concept of a
decentralized database. This feature is a key component of the DPoPS as it offloads the
mainchain from the lesser essential information required in the consensus. Thanks to its
capacity to easily evolve, the decentralized database will also preface the next improvements to
be made to the network.

In privacy coins, users value decentralization and tolerance to failure above efficiency, and this
is why we have generally opted for the more decentralized, fair, and trustworthy options over
more efficient ones. With the introduction of sidechains, we will, however, allow creating
additional blockchains where the decentralization vs. efficiency tradeoff will better match the
specific user or use case’s needs.

We believe that the fact that users have the right to decide whether they are ready to give up
some privacy to take part in the network is a positive evolution. If anything, it makes the X-Cash
blockchain more open because anyone can take part in the blockchain consensus without the
need for specialized hardware.

From a community point of view, we are convinced the introduction of DPoPS will strengthen the
users around their delegates and allow a more democratic decision-making process in any
network related decision. With DPoPS, the team’s vision to create the most efficient and
democratic decentralized organization is getting one step closer.
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Appendix

Data Transmission Protocol templates

Block verifiers verification processes

MAIN_NODES_TO_NODES_PART_4_OF_ROUND_CREATE_NEW_BLOCK
Description: This template is used during the block creation process by the block producer to
share the block header of the proposed block with the block verifiers for them to verify it.
Specific variables: block_ bob

MAIN_NODES_TO_NODES_PART_4_OF_ROUND

Description: This template is used during the block creation process by the block producer to
share the block content of the proposed block with the block verifiers for them to verify it.
Specific variables: vrf_public_key, vrf_alpha_string, vrf_rpoof, vrf_beta_string

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_VRF_DATA

Description: This template is used in all VRF related processes by the block producer to share
the VRF data with the block verifiers for them to verify all block verifiers data.
Specific variables: vrf_secret_key, vrf_public_key, random_data

NODES_TO_NODES_VOTE_RESULTS

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/jedisct1/libsodium


Description: This template is used in all consensus related processes by the delegates to share
the result of their votes with the other delegates.

Specific variables: vote_settings, vote_data

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_BLOCK_BLOB_SIGNATURE

Description: This template is used in the signature aggregation process by the block verifiers to
share their block blob signature.

Specific variables: block_blob_signature

BLOCK_VERIFIERS_TO_MAIN_NETWORK_DATA_NODE_CREATE_NEW_BLOCK

Description: This template is used during the block production process by the block verifiers to
inform the block producer that they acknowledge it’s status.

Specific variables: N/A

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_INVALID_RESERVE_PROOFS

Description: This template is used during the reserve proofs verification process by all delegates
to share with the other delegates the invalid reserve proofs they have found.

Specific variables: reserve_proof

NODE_TO_NETWORK_DATA_NODES_GET_PREVIOUS_CURRENT_NEXT_BLOCK_VERIFI
ERS_LIST

Description: This template is used by any node from the network to request the list of previous,
current and next block verifiers.

Specific variables: N/A

NODE_TO_NETWORK_DATA_NODES_GET_CURRENT_BLOCK_VERIFIERS_LIST

Description: This template is used by any node from the network to request the list of current
block verifiers.

Specific variables: N/A

NETWORK_DATA_NODE_TO_NODE_SEND_PREVIOUS_CURRENT_NEXT_BLOCK_VERIFI
ERS_LIST

Description: This template is used by a network data node to send the list of previous, current a
next block verifiers to a node that requested it.

Specific variables: N/A



NETWORK_DATA_NODE_TO_NODE_SEND_CURRENT_BLOCK_VERIFIERS_LIST

Description: This template is used by a network data node to send the list of current block
verifiers to a node that requested it.

Specific variables: N/A

Delegates commands

NODES_TO_BLOCK_VERIFIERS_REGISTER_DELEGATE

Description: This template is used by a node in the network to register as a delegate in the
decentralized database and share its details with all block verifiers

Specific variables: delegate_name, delegates_IP_address, public_address,
xcash_proof_of_stake_signature

NODES_TO_BLOCK_VERIFIERS_REMOVE_DELEGATE

Description: This template is used by a delegate in the network to ask the block verifiers to be
removed from the decentralized database.

Specific variables: N/A

NODES_TO_BLOCK_VERIFIERS_UPDATE_DELEGATE

Description: This template is used by a delegate in the network to ask the block verifiers to
modify its details in the decentralized database.

Specific variables: value

NODE_TO_BLOCK_VERIFIERS_ADD_RESERVE_PROOF

Description: This template is used by a node in the network to send a reserve proof to the block
verifiers to be added to the decentralized database.

Specific variables: reserve_proof

Blockchain syncing processes

NODE_TO_BLOCK_VERIFIERS_GET_RESERVE_BYTES

Description: This template is used by a node in the network to request the reserve bytes for a
given block.

Specific variables: block_height

BLOCK_VERIFIERS_TO_NODE_SEND_RESERVE_BYTES



Description: This template is used by a block verifier to send to a node the reserve bytes for a
given block.

Specific variables: reserve_bytes

NODES_TO_BLOCK_VERIFIERS_RESERVE_BYTES_DATABASE_SYNC_CHECK_ALL_UPD
ATE

Description: This template is used by a node to check which block verifiers have a synced
reserve bytes database.

Specific variables: N/A

BLOCK_VERIFIERS_TO_NODES_RESERVE_BYTES_DATABASE_SYNC_CHECK_ALL_DO
WNLOAD

Description:The purpose of this message is for a node to check what block verifiers have a
synced reserve bytes database

Specific variables:

Database syncing processes

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_BYTES_DATABASE_SYNC_CHEC
K_ALL_UPDATE

Description: This template is used by a block verifier to check if its reserve bytes database is
synced.

Specific variables: data_hash

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_BYTES_DATABASE_SYNC_CHEC
K_ALL_DOWNLOAD

Description: this template is used by a block verifier to confirm to another one if it’s reserve
bytes database is up to date.

Specific variables: reserve_bytes_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_BYTES_DATABASE_SYNC_CHEC
K_UPDATE

Description: This template is used by a block verifier to check if its reserve bytes database is
synced.

Specific variables: data_hash



BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_BYTES_DATABASE_SYNC_CHEC
K_DOWNLOAD

Description: This template is used by a block verifier to check if its reserve bytes database is
synced.

Specific variables: reserve_bytes_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_BYTES_DATABASE_DOWNLOAD
_FILE_UPDATE

Description: This template is used by a block verifier to download the up-to-date reserve bytes
database from a block verifier.

Specific variables: file

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_BYTES_DATABASE_DOWNLOAD
_FILE_DOWNLOAD

Description: This function is used by a block verifier to send its up-to-date reserve bytes
database to another one.

Specific variables: reserve_bytes_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_PROOFS_DATABASE_SYNC_CH
ECK_ALL_UPDATE

Description: This template is used by a block verifier to check if its reserve proof database is
synced.

Specific variables: data_hash

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_PROOFS_DATABASE_SYNC_CH
ECK_ALL_DOWNLOAD

Description: this template is used by a block verifier to confirm to another one if its reserve bytes
database is up to date.

Specific variables: reserve_proof_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_PROOFS_DATABASE_SYNC_CH
ECK_UPDATE

Description: This template is used by a block verifier to check if its reserve proof database is
synced.

Specific variables:



BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_PROOFS_DATABASE_SYNC_CH
ECK_DOWNLOAD

Description: This template is used by a block verifier to confirm to another one if it’s reserve
bytes database is up to date.

Specific variables: reserve_proof_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_PROOFS_DATABASE_DOWNLOA
D_FILE_UPDATE

Description: This template is used by a block verifier to download the up-to-date reserve proof
database from a block verifier.

Specific variables: file

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_RESERVE_PROOFS_DATABASE_DOWNLOA
D_FILE_DOWNLOAD

Description: This function is used by a block verifier to send its up-to-date reserve bytes
database to another one.

Specific variables: reserve_proofs_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_DELEGATES_DATABASE_SYNC_CHECK_UP
DATE

Description: This template is used by a block verifier to check if its delegates database is
synced.

Specific variables: data_hash

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_DELEGATES_DATABASE_SYNC_CHECK_D
OWNLOAD

Description: this template is used by a block verifier to confirm to another one if its delegates
database is up to date.

Specific variables: delegates_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_DELEGATES_DATABASE_DOWNLOAD_FILE
_UPDATE

Description: This template is used by a block verifier to download the up-to-date delegates
database from a block verifier.

Specific variables: N/A



BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_DELEGATES_DATABASE_DOWNLOAD_FILE
_DOWNLOAD

Description: This function is used by a block verifier to send its up-to-date delegates database to
another one.

Specific variables: delegates_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_STATISTICS_DATABASE_SYNC_CHECK_UP
DATE

Description: This template is used by a block verifier to check if its statistics database is synced.

Specific variables: data hash

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_STATISTICS_DATABASE_SYNC_CHECK_DO
WNLOAD

Description: This template is used by a block verifier to confirm to another one if its statistics
database is up to date.

Specific variables: statistics_database

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_STATISTICS_DATABASE_DOWNLOAD_FILE_
UPDATE

Description: This template is used by a block verifier to download the up-to-date statistics
database from a block verifier.

Specific variables: N/A

BLOCK_VERIFIERS_TO_BLOCK_VERIFIERS_STATISTICS_DATABASE_DOWNLOAD_FILE_
DOWNLOAD

Description: This function is used by a block verifier to send its up-to-date statistics database to
another one.

Specific variables: statistics_database


